932. Molecular Polarisability: The Molar Kerr Constants and Dipole Moments of Sixteen Monosubstituted Naphthalenes.
 By R. J. W. Le Fèvre and (Mrs.) A. Sundaram.

It is shown that previous determinations of the anisotropy of polarisability of naphthalene, and of various bonds in combination with phenyl, can-provided exaltation effects are also included-lead to correct predictions of molar Kerr constants of naphthalene derivatives. The $\mathrm{C}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{X}$ angles in $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{X}$ are assumed to be 120°. Non-planar conformations are indicated when $\mathrm{X}=\alpha$ - or $\beta-\mathrm{MeO}, \alpha-\mathrm{CHO}, \alpha-\mathrm{COMe}, \alpha-\mathrm{NO}_{2}$, and α - or $\beta-\mathrm{NH}_{2}$; for the remaining cases, nearly flat structures appear satisfactory.
Le Fèvre and Le FÈvre ${ }^{1}$ reported the molar Kerr constants, $\infty\left({ }_{m} K_{2}\right)$, dielectric polarisations, ∞P_{2}, apparent dipole moments, μ, etc., of naphthalene and its eight monohalogenoderivatives at infinite dilution in carbon tetrachloride. The present paper records
${ }^{1}$ Le Fèvre and Le Fèvre, J., 1955, 1641.
measurements on a further sixteen monosubstituted naphthalene derivatives, for several of which possibilities of rotational isomerism exist. Other evidence ${ }^{2-4}$ suggests that the 8 -hydrogen atom is more sterically affected by a bulky group in the 1-position than are the 1 - or the 3 -hydrogen atom by the same group in position 2 , and that the " average " conformation of such a group, if unsymmetrical, may be determined thereby. Isomers related in the s-cis-s-trans sense ${ }^{5}$ usually differ in the anisotropies of their polarisabilities, the assessment of which therefore provides a method of special value for the investigation of solute structures of this kind; ${ }^{6,7}$ examples involving hydroxy-, methoxy-, dialkylamino-, etc., derivatives of benzene are given in refs. 8-10.

Experimental

Materials.-Commercial samples of the following were recrystallised or redistilled, as appropriate, immediately before use: 1- and 2 -methylnaphthalene, methyl 1-naphthyl ether, methyl 1-and 2 -naphthyl ketone, 1-naphthonitrile, 2 -naphthaldehyde, 1-nitronaphthalene, and 1-and 2-naphthylamines. Methyl 2-naphthyl ether and 2-naphthonitrile were prepared as described by Vogel, ${ }^{11} 1$-naphthaldehyde by Badger's method, ${ }^{12}$ and 2-nitronaphthalene by that of Hodgson and Marsden. ${ }^{13}$ M. p.s or b. p.s of the specimens taken as solutes were as tabulated.

		Lit. (ref.)
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CH}_{3}$	b. p. 245°	$244 \cdot 6^{\circ}$ (14)
2 - ${ }^{\prime}$ (from aq. EtOH)	m. p. 35°	36° (14)
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{OH} \quad$,	m. p. $94^{\circ}{ }^{\circ}$	94° (15)
$\stackrel{2-}{1-\mathrm{C}_{10} \mathrm{H}_{7}^{\prime} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3}}$	m. p. 121° b. p. $180^{\circ} /$ ca. 20 mm.	166-162 ${ }^{122^{\circ}} / 12 \mathrm{~mm}$. (11)
	b. p. $190^{\circ} / \mathrm{ca} .20 \mathrm{~mm}$.	$170-171^{\circ} / 11 \mathrm{~mm}$. (11)
1- $\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CN}$	b. p. $170^{\circ} / \mathrm{ca} .20 \mathrm{~mm}$.	$166-169^{\circ} / 18 \mathrm{~mm}$. (11)
2- (from ligroin)	m. p. 66°	$66^{\circ}(16)$
1-C $\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{OCH}_{3}$	b. p. 260°	258° (17)
2 2- ${ }^{\text {a }}$, (from $\mathrm{C}_{6} \mathrm{H}_{6}$)	m. p. $71{ }^{\circ}$	72° (18)
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CHO}$......	b. p. $160^{\circ} / c a .20 \mathrm{~mm}$.	$150^{\circ} / 13 \mathrm{~mm}$. (11)
2- ${ }^{\text {- }}$ (from $\mathrm{H}_{2} \mathrm{O}$)	m. p. $61{ }^{\circ}$	59° (16)
1- $\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{NO}_{2}$ (from EtOH)	m. p. 56°	55.8° (16)
$2-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{NO}_{2}$ (from aq. EtOH)	m. p. 80°	79° (16)
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{NH}_{2}$	m. p. 50°	$50^{\circ}(15)$
$2-\quad$,	m. p. 112°	$112^{\circ}(15)$

Apparatus, Procedures, Observations, etc.-Details of the measurement and interpretation of molar Kerr constants are given in refs. $7(a-d)$ and of dipole moments in ref. 19. Symbols and methods of calculation used here are explained in refs. 7 and 19, and summarised in ref. 20.

[^0]Observations and results are in Tables 1-3. Table 1 shows data from which are deduced the molar Kerr constants, dipole moments, polarisations, etc., listed in Tables 2 and 3.

Table 1.

Values of $\Delta n, \Delta n^{2}, \Delta d, \Delta \varepsilon$, and ΔB for solutions in carbon tetrachloride (except where specified as benzene) at 25°.

$10^{5} w_{2}$	$10^{4} \Delta n$	$10^{4} \Delta$	-10^{5}		$0^{10} 4$
	Solute: 1-Methylnaphthalene				
1403			1202		
2812	68	200	2430		94
3398			2956		
4518	109	321	3848		147
5792			4942		
6750	163	481	5732		212
8818	215	611		701	295
9909	242	691		797	325
13,089	315	908		1041	533
15,770	370	1079		1246	
whence $\Sigma \Delta n / \Sigma w_{2}=0.240 ; \Sigma \Delta n^{2} / \Sigma w_{2}=0.696$; $\Sigma \Delta d / \sum w_{2}=-0.8556 ; \sum_{\sum \Delta \varepsilon / \Sigma w_{2}}^{=}=0.795 ; ~$ $\Sigma \Delta B / \Sigma w_{2}=3.31 \times 10^{-7}$.					

Solute:					
2668	65	191	2357	266	139
$\mathbf{2 6 5 9}$	103	303	3869	449	210
5939	148	436	5173	601	290
7460	186	548	6445	748	361
8686	213	628	7485	884	420
9512	227	670	8174	962	466

whence $\sum \Delta n / \sum w_{2}=0.244 ; \sum \Delta n^{2} / \sum w_{2}=0.718$;
$\Sigma \Delta d / \sum w_{2}=-0.8666 ; \sum \Delta \varepsilon / \sum w_{2}=1.01 ;$ $\Sigma \Delta B / \Sigma w_{2}=4 \cdot 87_{7} \times 10^{-7}$.

Solute:					
342	-	- Naphthol			
565	17	50	-300	-	-
681	-	-	-	219	-
819	24	71	435	-	84
827	-	-	-	263	-
1032	-	-	-	330	-
1163	35	103	620	-	128
1349	41	121	717	-	145
1657	53	156	930	-	182

whence $\sum \Delta n / \sum w_{2}=0.306 ; \sum \Delta n^{2} / \sum w_{2}=0.902$; $\Sigma \Delta d / \sum w_{2}=-0.5406 ; \sum \Delta \varepsilon / \sum w_{2}=3 \cdot 19 ;$ $\Sigma \Delta B / \Sigma w_{2}=10.7 \times 10^{-7}$

Solute:					
111	4	12	60	-	-
225	7	21	119	-	24
232	-	-	-	75	-
287	9	27	153	-97	-
298	-	-	-161	-	37
301	-	-	$\overline{119}$	-	
377	-	$\overline{36}$	205	$\overline{129}$	-

whence $\sum \Delta n / \sum w_{2}=0.317 ; \sum \Delta n^{2} / \sum w_{2}=0.951$; $\Sigma \Delta d / \sum w_{2}=-0.5328 ; \sum \Delta \varepsilon / \sum w_{2}=3.23$; $\Sigma \Delta B / \Sigma w_{2}=12.03 \times 10^{-7}$.

$10^{5} w_{2}$	$10^{4} \Delta n$	$10^{4} \Delta n^{2}$	$-10^{5} \Delta d$	$10^{4} \Delta \varepsilon$	$10^{10} \Delta B$
	Solute: 1-Methoxynaphthalene				
1390				-	124
1523	35	103	-	-	
1954		-	-	-	181
2418	55	161	1633	585	214
4021	90	264	2701	1068	355
4535	101	297	3028	1235	405
5970	133	391	4004	1632	
7030	159	468	4687	1900	
whence $\sum \Delta n / \sum w_{2}=0.225 ; ~ \sum \Delta n^{2} / \sum w_{2}=0.661$;					
$\Sigma \Delta d / \sum w_{2}=-0.6696 ; ~ \sum \Delta \varepsilon / \sum w_{2}=2 \cdot 67_{8}$;					

Solute: 2-Methoxynaphthalene

521	-	-	-	117	-
817	-	-	-	188	-
1221	-	-	-	279	-
1541	-	-	-	65	
1749	35	102	1185	-	72
1842	-	-	-	414	-
2629	55	161	1802	-	109
3859	78	229	2627	-	160
4690	98	288	3204	-	195
5625	117	344	3848	-	235

whence $\Sigma \Delta n / \Sigma w_{2}=0.206 ; \sum \Delta n^{2} / \sum w_{2}=0.606$;
$\sum \Delta d / \sum w_{2}=-0.4309 ; \sum \Delta \varepsilon / \sum w_{2}=2.27$; $\Sigma \Delta B / \sum w_{2}=4 \cdot 17 \times 10^{-7}$.

	Solute: 1-Naphthaldehyde				
142	-		-	-	49
310	-	-	-	-	97
408	-	-	-	-	137
506	-	-	-	-	174
590	-	-	-	-	198
937	33	96	539	1040	
1634	57	167	941	1830	
2393	83	243	1359	2692	
3342	117	342	1906	3790	-
4114	144	422	2361	4670	-

whence $\sum \Delta n / \sum w_{2}=0.349 ; \sum \Delta n^{2} / \sum w_{2}=1.023$;

Solute: 2-Naphthaldehyde

Solute:					2-Naphthaldehyde
102	-	-	-	-	76
193	-	-	-	-	147
242	-	-	-	-	220
296	-	-	-	-	250
339	-	76	481	1100	-
827	26	149	921	2064	-
1557	51	81	237	1432	3326
2486	81	-			
3424	109	319	1988	4487	-
4215	138	404	2439	5543	-

whence $\sum \Delta n / \sum w_{2}=0.324 ; \sum \Delta n^{2} / \sum w_{2}=0.947$;
$\sum \Delta d / \sum w_{2}=-0.5805 ; \sum \Delta \varepsilon / \sum w_{2}=13 \cdot 2_{1} ;$ $\Sigma \Delta B / \Sigma w_{2}=74 \cdot 2_{3} \times 10^{-7}$.

Table 1. (Continued.)

$10^{5} w_{2}$	$10^{4} \Delta n$	$10^{4} \Delta n^{2}$	$10^{5} \triangle$	$10^{4} \Delta \varepsilon$	$10^{10} \Delta$
Solute: 1-Acetylnaphthalene.					
343					66
507	-	-	-	-	102
636					123
872	24	70	555	851	163
1021	-	-	-		192
1340	-	-			251
1447	40	117	917	1488	
2329	65	191	1507	2401	
3156	84	247	1996	3290	
4236	112	329	2642	4393	
whence $\Sigma \Delta n / \sum w_{2}=0.270 ; \sum \Delta n^{2} / \Sigma w_{2}=0.792$ $\Sigma \Delta d / \sum w_{2}=-0.6326 ; \sum \Delta \varepsilon / \sum w_{2}=10.32 ;$ $\Sigma \Delta B \mid \Sigma w_{2}=19.00 \times 10^{-7}$.					
	Solut	2-Acetylnaphthalene.			
111	-	-		-	59
168	-	-	-	-	86
260	-	-	-	-	130
339	-	-	-	-	180
435	-	-	270	-	229
520	-	-	-	-	280
629	-	-	393	-	
738	-	-	460		
911	22	65	568	1122	
1462	34	100	928	1790	
1947	48	141	1243	2362	
2144	51	150	,	2626	
2549	61	180	-	3126	

whence $\sum \Delta n / \sum w_{2}=0.240 ; \sum \Delta n^{2} / \sum w_{2}=0.706$; $\sum \Delta d / \sum w_{2}=-0.6308 ; \sum \Delta \varepsilon / \sum w_{2}=12 \cdot 2_{3} ;$ $\Sigma \Delta B \mid \sum w_{2}=52 \cdot 6_{4} \times 10^{-7}$.

Solute: 2-Nitronaphthalene.

89	-	-	41	200	132
128	-	-	60	285	185
189	-	-	88	421	272
226	-	-	105	505	337
257	-	-	119	574	379
327	-	-	153	729	470
672	18	53	-	-	-
1064	28	82	-	-	-
1321	34	100	-	-	-
1639	43	126	-	-	-
1811	48	141	-	-	-
2024	56	165	-		

whence $\sum \Delta n / \sum w_{2}=0.266 ; \sum \Delta n^{2} / \sum w_{2}=0.782$; $\Sigma \Delta d / \sum w_{2}=-0.4655 ; \Sigma \Delta \varepsilon / \sum w_{\mathrm{q}}=22.32$; $\Sigma \Delta B / \sum w_{2}=146 \cdot 1 \times 10^{-7}$.

	Solute: 1-Naphthonitrile				
153	3	9	97	318	89
264	5	15	165	545	170
330	7	21	228	683	228
516	12	35	345	1071	342
628	15	44	389	1309	425
730	18	53	469	1515	485

whence $\sum \Delta n / \sum w_{2}=0.229 ; \sum \Delta n^{2} / \sum w_{2}=0.675$;
$\Sigma \Delta d / \sum w_{2}=-0.6459 ; \Sigma \Delta \varepsilon / \sum w_{2}=20.76 ;$ $10^{7} \Delta B=64 \cdot 9_{5} w_{2}+290 w_{2}{ }^{2}$.

Solute: 2-Naphthonitrile.

122	-	-	-	299	205
183	-	-	-	444	330
234	-	-	-	570	430
274	-	-	-	766	511
309	-	-	-	858	557
352	-	$\overline{46}$	$\mathbf{3 9 2}$	-	-
645	16	85	652	-	-
1075	29	85			
1832	48	141	1173	-	-
2241	58	170	1400	-	-
2730	71	208	1717	-	-
3142	83	244	2009	-	-

whence $\sum \Delta n / \sum w_{2}=0.262 ; \sum \Delta n^{2} / \sum w_{2}=0.767$;
$\Sigma \Delta d / \sum w_{2}=-0.6295 ; \sum \Delta \varepsilon / \sum w_{2}=24 \cdot 36 ;$

$$
{ }^{2} \Sigma \Delta B / \Sigma w_{2}=181 \cdot 4 \times 10^{-7} .
$$

Solute: 1-Naphthylamine. Solvent: Benzene.

828	-	-	-	-	27
1137	17	51	-228	252	-
1407	-	-	-	-	55
1623	-	-	-	-	60
1836	-	96	-436	461	-
2085	32	126	-576	607	-
2748	42	153	-683	729	-
3284	51	153			
4315	66	198	-902	962	-
6020	91	273	-1270	1338	-

whence $\sum \Delta n / \sum w_{2}=0.153 ; \sum \Delta n^{2} / \sum w_{2}=0.458$; $\Sigma \Delta d / \sum w_{2}=+0.2090 ; \sum \Delta \varepsilon / \sum w_{2}=2.22$;
$\Sigma \Delta B / \Sigma w_{2}=3.23 \times 10^{-7}$.

Solute: 2-Naphthylamine. Solvent: Benzene.

636	-	-	-	$\overline{17}$	18
829	12	36	-174	242	-
963	-	-	-	27	
1385	20	-	-294	406	-
1407	-	-	-	$\overline{40}$	
1638	-	$\overline{-}$	-519	714	-
2438	36	108	-782	1075	-
3633	54	162	-897	1229	-

whence $\sum \Delta n / \sum w_{2}=0.147 ; \sum \Delta n^{2} / \sum w_{2}=0.440$;
$\Sigma \Delta d / \sum w_{2}=0.2123 ; \sum \Delta \varepsilon / \sum w_{2}=2.9_{2} ;$
$\Sigma \Delta B / \Sigma w_{2}=2.82 \times 10^{-7}$.

Table 2.
Total polarisations at infinite dilution, molecular refractions and dipole moments calculated from Table 1.

Solute	$\alpha \varepsilon_{1}$	β	$\gamma^{\prime} n_{1}{ }^{2}$	M_{2}	$\infty \mathrm{P}_{2}$ (c.c.)	$R_{\text {D }}$ (c.c.)	μ (D)
1-C $\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CH}_{3}$	$0.79{ }_{5}$	-0.5400	0.696	142.2	52.1	$48 \cdot 6$	$0 \cdot 22_{3}$
	1.01	-0.5469	0.718	$142 \cdot 2$	$55 \cdot 5$	$49 \cdot 14$	$0 \cdot 44{ }^{3}$
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{OH}$	$3 \cdot 19$	-0.3412	0.902	$144 \cdot 2$	$84 \cdot 2$	$47 \cdot 7$	1.29
	$3 \cdot 23$	-0.3363	0.951	$144 \cdot 2$	$84 \cdot 7$	$48 \cdot 3$ 6	1.29
1-C $\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{OCH}_{3}$	$2 \cdot 68$	-0.4226	$0 \cdot 661$	158.1	$86 \cdot 0_{5}$	$50 \cdot 3$	$1 \cdot 27{ }_{4}$
	$2 \cdot 27$	-0.4309	0.606	158.1	79.5	$49 \cdot 6$	$1 \cdot 16$
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CHO}$	11.29	-0.3611	1.023	$156 \cdot 2$	225.8	$54 \cdot 3{ }_{6}$	$2 \cdot 87$
2- ${ }^{\text {2 }}$	13.21	-0.3664	0.947	$156 \cdot 2$	$257 \cdot{ }_{4}$	53.2	$3 \cdot 14$
1- $\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3}$	$10 \cdot 32$	-0.3992	0.792	$170 \cdot 2$	229.5	$55 \cdot 9$	$2 \cdot 89$
	$12 \cdot 23$	-0.3981	0.706	$170 \cdot 2$	263.8	$54 \cdot 2_{4}$	$3 \cdot 18$
1- $\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CN}$	$20 \cdot 76$	-0.4076	0.675	$153 \cdot 2$	376.5	$48 \cdot 6$	$3 \cdot 99$
2-	$24 \cdot 36$	-0.3973	0.767	$153 \cdot 2$	$434 \cdot 7$	$49 \cdot 9$	$4 \cdot 32$
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{NO}_{2}$	18.44	-0.3007	0.753	173.2	379.7	$53 \cdot 3$	3.98
2-	22.32	-0.2938	0.782	$173 \cdot 2$	$450 \cdot 7$	$53 \cdot 6$	$4 \cdot 39$
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{NH}_{2} \dagger$	$2 \cdot 22$	+0.2392	$0 \cdot 458$	$143 \cdot 2$	96.9	$49 \cdot 0$	1.49
2- \quad, \dagger	2.92	+0.2430	$0 \cdot 440$	$143 \cdot 2$	$115 \cdot 6$	$48.3{ }_{4}$	1.78

Table 3.
Molar Kerr constants at infinite dilution calculated from Tables 1 and 2 together with calculated molar refractions and exaltations.

Solute	γ	δ	$\infty\left({ }_{m} K_{2}\right) \cdot 10^{12}$	R_{D} (calc.) *	$R_{\text {D }}$ (calc.) \dagger	$10^{23} \Delta b \ddagger$
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CH}_{3}$	$0 \cdot 165$	$47 \cdot 30$	51.43	$49 \cdot 0$	$47 \cdot 6$	-0.042
2 - ,	$0 \cdot 167$	$69 \cdot 67$	75.05			+0.017
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{OH}$	$0 \cdot 210$	152.9	164.7	$45 \cdot 9$	$44 \cdot 5$	+0.214
2 -	0.218	171.9	185.2			+0.293
1-C $\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{OCH}_{3}$	$0 \cdot 154$	$127 \cdot 6$	$151 \cdot 1$	$50 \cdot 8$	$49 \cdot 4$	-0.059
	$0 \cdot 142$	59.51	$70 \cdot 72$			-0.143
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CHO}$	$0 \cdot 239$	478.4	554.5	$49 \cdot 0$	$47 \cdot 6$	+0.637
	0.216	1060	1235			+0.499
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3}$	0.185	271.5	341.0	$53 \cdot 8$	$52 \cdot 4$	$+0.250$
${ }^{2-}$, ${ }^{\text {- }}$	$0 \cdot 164$	752.0	$951 \cdot 7$			$+0.052$
1- $\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CN}$	0.157	928.0	1054	48.8	$47 \cdot 4$	-0.024
2 - ${ }^{1}$	$0 \cdot 179$	2591	2961			+0.131
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{NO}_{2}$	$0 \cdot 175$	$755 \cdot 7$	$970 \cdot 4$	50.9	49.5	+0.285
${ }^{2-}{ }^{-\prime}$	$0 \cdot 183$	2086	2694			+0.321
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{NH}_{2}$ §	$0 \cdot 102$	7.88	$81 \cdot 1$	$47 \cdot 8$	46.4	+0.143
2- ,	0.098	6.88	66.7	,		+0.064

* Calc. by using R_{D} of naphthalene and Vogel's data. \dagger Calc. by using $\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}_{\mathrm{Ar}}$ from Vogel's data.
\ddagger Calc. as [R_{D} (obs.) $-R_{\mathrm{D}}$ (calc.)] $\times 0.11891=10^{-23} \Delta b$. $§$ Determined in benzene.
Table 4.
Dipole moments published since 1948.

Solute
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CH}_{3}$
$2-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CH}_{3}$
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{OH}$
$2-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{H}^{7} \mathrm{OH}$
$\begin{aligned} & 1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{OCH}_{3} \\ & 1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{2} \end{aligned}$
"
"
"
",
$\begin{aligned} & 1-\mathrm{C}_{10} \mathrm{H}_{7}^{\prime} \cdot \mathrm{NH}_{2} \\ & 2-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{NH}_{2} \end{aligned}$

Solvent
(Liquid)

$\mathrm{C}_{6} \mathrm{H}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{6}$
(Liquid)
$\mathrm{C}_{6} \mathrm{H}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{3}$
CCl_{4}
DiOxan^{2}
$\mathrm{C}_{6} \mathrm{H}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{6}$
$\mathrm{C}_{6} \mathrm{H}_{6}$
$\mu(\mathrm{D})$
0.51
0.28
0.23
0.42
0.44
1.39
1.41
1.28 ± 0.03
4.00
3.98
3.87
4.00
3.90
3.68
1.78
1.90_{4}

Authors
Rampolla and Smyth ${ }^{21}$
Luther and Operskalski ${ }^{22}$
Sahney et al. ${ }^{23}$
Rampolla and Smyth ${ }^{21}$
Luther and Operskalski ${ }^{22}$
Sahney et al. ${ }^{23}$

Everar'd and Sutton ${ }^{2}$ Rampolla and Smyth ${ }^{21}$ Chau and Le Fèvre ${ }^{24}$
", ",
Sahney et al. ${ }^{23}$ ",
",

[^1]
Discussion

Dipole Moments.-Dipole moments for nine of the sixteen substances listed in Table 2 have been reported previously. The literature since 1948 contains the values in Table 4. Measurements made before 1948 are given by Wesson; ${ }^{25}$ they concern only nitronaphthalenes, naphthols, and naphthylamines, and differ considerably among themselves (Table 5). Our results fall almost within the limits of Table 5, and disagree significantly with the moments of Table 4 only for the naphthols and naphthylamines.

Molecular Refractions.-The R_{D} 's of Table 3 have been calculated in two ways: either (a) the R_{D} of naphthalene, less the bond refraction appropriate ${ }^{26}$ for $\mathrm{C}-\mathrm{H}$, or (b) Vogel's

Table 5.
Dipole moments published before 1948.

refractivities ${ }^{26}$ alone ($11 R_{\mathrm{CA}_{\mathrm{Ar}}-\mathrm{C}_{\mathrm{Ar}}}$ plus $7 R_{\mathrm{C}-\mathrm{H}}$), are taken as $R_{\text {naphthyl }}$, which is then added to $R_{\text {C-subst. }}$. Comparisons of the R_{D} 's calculated and observed reveal differences exceeding experimental errors (which we estimate as ± 0.3 c.c. on the average). Since the refractions computed by method (a) are closer to the measured values than are those by (b), the former have been used in estimating exaltations of polarisability Δb in these molecules. such Δb 's are mostly larger than the corresponding quantities noted previously ${ }^{7 c}$ for monosubstituted benzenes; no generalisation regarding the relative magnitudes of Δb for α - and β-naphthalene derivatives can be drawn from Tables 2 and 3.

Molar Kerr Constants.-The electric double refraction of none of the solutes in Tables 1 and 3 has been examined before. In all cases the ${ }_{\infty}\left({ }_{m} K_{2}\right)$ is positive; the 2 -isomers have higher values than the 1 -isomers except for the methoxy- and amino-naphthalenes. Data for 1-and 2-halogeno-naphthalenes have already been reported by Le Fèvre and Le Fèvre. ${ }^{1}$

We now proceed to attempt the calculation a priori of the molar Kerr constants to be expected for likely structures or conformations of these naphthalene derivatives. The anisotropic polarisabilities of the bonds involved are as listed in ref. 6, Table 1, and ref. 27, Table 5, the last-cited being longitudinal, transverse, and "vertical" polarisabilities ($b_{\mathrm{L}}^{\mathrm{XY}}, b_{\mathrm{T}}^{\mathrm{XY}}$, and $b_{\mathrm{V}}^{\mathrm{XY}}$, respectively) for bonds $\mathrm{X}-\mathrm{Y}$ in combination with phenyl. The principal polarisabilities of the naphthyl group ($b_{1} \mathrm{C}_{10} \mathrm{H}_{7}, b_{2} \mathrm{C}_{10} \mathrm{H}_{7}$, and $b_{3} \mathrm{C}_{10} \mathrm{H}_{7}$) are derived from the semi-axes of the polarisability ellipsoid deduced for naphthalene ${ }^{1}$ together with those of the $\mathrm{C}-\mathrm{H}$ link. ${ }^{6}$ Computational methods are outlined in ref. $7 d$ and described in detail in ref. 28. The exaltations Δb are assumed to operate in those directions where electromeric shifts should be easiest. For simplicity, all $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles of the naphthalene skeleton are regarded as 120°, and substituent $\mathrm{C}-\mathrm{X}$ bonds are supposed to be likewise inclined towards their adjoining $\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}_{\mathrm{Ar}}$ bonds. Numerically the deviations from 120° shown for entry M 244 of ref. 29 do not significantly affect the calculations of ${ }_{m} K^{\prime}$ s which now follow in the compound order adopted in Tables 1-3.

With 1- and 2-methylnaphthalene, when the polarisability ellipsoid reported by Le Fèvre and Rao ${ }^{27}$ for the $\mathrm{C}-\mathrm{CH}_{3}$ unit is used, molecular semi-axes * emerge as in Table 6;

[^2]Table 6.
Principal polarisabilities and moment components in 1- and 2-methylnaphthalene.

Direction cosines with *							
Molecule	$O X$					$O Y$	$O Z$
$1-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CH}_{3}$	$b_{1}=2.436$	1	0	0			
	$b_{2}=1.921$	0	1	0			
	$b_{3}=1.176$	0	0	1			

\mu_{2}=0.22_{3}

\mu_{3}=0

2-\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CH}_{3}

b_{1}=2.361

b_{2}=1.931\end{array}\right.\)

* References axes $O X$ and $O Y$ are in the molecular plane, $O Y$ is parallel to the 2,3-bond, and $O Z$ is perpendicular to $O X$ and $O Y$.
addition of the exaltation equally to b_{1} and b_{2} then gives ${ }_{m} K^{\prime}$ s calc. of 58.7 and 72.5×10^{-12}, respectively. The observed values are 51.4 and $75.0_{5} \times 10^{-12}$, so that our predictions are in error by ca. 14% and $3 \cdot 4 \%$. The discrepancy with 2 -methylnaphthalene is tolerable, in view of the facts that the structural assumptions made may be oversimple and that hyperconjugation might occur to an unknown extent (compare the moments of the 1-and 2 -methyl isomers, 0.22_{3} and 0.44 D , and the remarks of Hoi and Daudel ${ }^{30}$ on the former). As to 1-methylnaphthalene, we note that a Leybold model shows an overlap of the van der Waals zones of the methyl group and of the 8 -hydrogen atom; in reality therefore the $\mathrm{C}-\mathrm{CH}_{3}$ bond may be deflected somewhat either towards the $O X$ - or the $O Z$-axis, and both of these distortions will tend to reduce ${ }_{\mathrm{m}} K$ calc.

With the 1 -and 2 -naphthols difficulties are encountered similar to those discussed ${ }^{8}$ for phenols by Le Fèvre and Williams: neither the conformation of the COH unit nor the direction of action of $\mu_{\text {resultant }}$ is known with certainty. However, the following approach roughly meets the data from experiment. From the polarisability semi-axes of methanol, Le Fèvre et al. ${ }^{31}$ deduced the three b 's for the COH fragment as $0 \cdot 123,0 \cdot 171$, and 0.086 . These are relatively small compared with the corresponding quantities for the naphthyl radical; therefore, as an approximation, let the principal directions in COH be taken so that $b_{\mathrm{L}}^{\mathrm{COH}}$ is parallel to the $\mathrm{C}-\mathrm{O}$ link in both naphthols and $b_{\mathrm{T}}^{\mathrm{OOH}}$ is in the plane of the naphthyl group. Estimates for 1- and 2-naphthol then become:

	Direction cosines with *		Direction cosines with *				
	$O X$	$O Y$	$O Z$		$0 X$	$O Y$	$O Z$
	1-Naphthol				$0-$ Naphthol		
$b_{1}=2.257$	1	0	0	$b_{1}=2.219$	0.9973	0.0732	0
$b_{2}=1.819$	0	1	0	$b_{2}=1.857$	-0.0732	0.9973	0
$b_{3}=1.052$	0	0	1	$b_{3}=1.052$	0	0	1

* $O X, O Y$, and $O Z$ are as defined under Table 6.

To these are added the observed exaltations (Table 3), wholly to b_{2} for 1-naphthol, and divided between b_{1} and b_{2} as $\cos ^{2} 30^{\circ}: \sin ^{2} 30^{\circ}$ for 2 -naphthol. Were $\mu_{\text {resultant }}$ acting along the $\mathrm{C}-\mathrm{O}$ bond directions in the two cases the calculated molar Kerr constants (131 and 219×10^{-12}) would disagree with the measured quantities (164.6 and 183.5×10^{-12}); prediction and experiment can be reconciled if in the 1 -isomer $\mu_{\text {ressultant }}$ is inclined 47.5° (or 132.5°) to the $\mathrm{C}-\mathrm{O}$ bond and in the 2 -isomer if the corresponding angle is 68.8° (or $\left.111 \cdot 2^{\circ}\right) ; \mu_{\text {ressltant }}$ in each structure being in the naphthalene plane. Then, respectively, we have:

	1-Naphthol			2 -Naphtho	
$b_{1}=2.257$	$\mu_{1}=0.95$	$10^{35} \theta_{1}=14 \cdot 65$	$b_{1}=2.439$	$\mu_{1}=0.944$	
$b_{2}=2.033$	$\mu_{2}=0.87_{3}$	$10^{35} \theta_{2}=24.51$	$b_{2}=1.930$	$\mu_{2}=0.880$	
$b_{3}=1.052$	$\mu_{3}=0$	${ }_{\mathrm{m}} K$ calc. $=164.7 \times 10^{-12}$	$b_{3}=1.55$		
$b_{3}=1.052$	$\mu_{3}=0$	$10^{12} \theta_{2} K$ calc. $=182.8$			

[^3]For comparison it may be noted that the angles 47.5° and 68.8° are analogous to those around 60° found satisfactory with alcohols ${ }^{31}$ and somewhat less so with phenols. ${ }^{8}$

If the angles between $\mathrm{C}-\mathrm{O}$ and $\mu_{\text {resultant }}$ are retained but the COH triangles are rotated into planes perpendicular to those of the naphthyl radicals, then the ${ }_{\mathrm{m}} K$'s calculated become algebraically negative (-50 and -92×10^{-12}) for both compounds; because of this we have preferred to regard the naphthols as nearly flat molecules. Inspection of Leybold models suggests no notable interference between hydroxyl groups in the 1- or 2 -position and the hydrogen atoms of the $\mathrm{C}_{10} \mathrm{H}_{7}$ nucleus.

The steric situation is different for the methoxynaphthalenes. Everard and Sutton ${ }^{2}$ concluded, from dipole moment studies, that the methoxy-group tends to lie in the plane of an aromatic ring to which it is attached, π-bonding from oxygen to the Ar-system being the cause conducive to flatness which, however, may not be completely achieved owing to overcrowding. With 1-methoxynaphthalene two planar conformations, A and B, can be imagined: in A the OMe unit is cis to the $8-\mathrm{H}$ atom, and in B it is trans. Since resultant moments, polarisability ellipsoids, and molar Kerr constants should be identical for models A and B, present techniques are of use only in choosing between non-planar variants of these forms. Nevertheless, the stable existence of form A is less likely than of B, because in A the van der Waals zones of methyl and of the 8 -hydrogen atom interpenetrate by ca. $1 \cdot 1 \AA$, while in form B methyl and the 2 -hydrogen atom do so by as little as $0 \cdot 1 \AA$. The resultant

Table 7.
Principal polarisabilities, moment components, etc., calculated for l-methoxynaphthalene.
Direction cosines with *

Model	$O X$				$O Y$
A or B (planar)	$b_{1}=2.393_{5}$	0.9995	0.0314	$0 Z$	
	$b_{2}=2.012_{5}$	-0.0314	0.9995	0	$\mu_{1}=-1.245$
	$b_{3}=1.236$	0	0	1	$\mu_{2}=-0.270$

whence $10^{35} \theta_{1}=12 \cdot 40_{7}, 10^{35} \theta_{2}=31 \cdot 69$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=185 \cdot 4$; if Δb added to b_{2}, $10^{35} \theta_{1}=12 \cdot 17,10^{35} \theta_{2}=32 \cdot 78$, and $10^{12}{ }_{\mathrm{m}} K_{\text {calc. }}=189$.

C (non-planar)	$b_{1}=2.356$	1	0	0	$\mu_{1}=0$
	$b_{2}=2.013_{3}$	0	0.9998	0.0175	$\mu_{2}=0.330$
	$b_{3}=1.272$	0	-0.0175	0.9998	$\mu_{3}=1.231$

whence $10^{35} \theta_{1}=10 \cdot 93,10^{35} \theta_{2}=-35 \cdot 71$, and $10^{12}{ }_{\text {n }} K_{\text {calc }}=-104 \cdot 2$; if Δb added to b_{2}, $10^{35} \theta_{1}=10 \cdot 69,10^{35} \theta_{2}=-34 \cdot 71$, and $10^{12}{ }_{\mathrm{m}} \mathrm{K}$ calc. $=-101 \cdot 0$.

D (non-planar)	$b_{1}=2.388$	0.9994	0.0320	0.0112	$\mu_{1}=-1.16_{4}$
	$b_{2}=2.015$	-0.0321	0.9995	0.0054	$\mu_{2}=-0.32_{7}$
	$b_{3}=1.239$	-0.0110	-0.0058	0.9999	$\mu_{3}=-0.40_{4}$

whence $10^{35} \theta_{1}=12 \cdot 25,10^{35} \theta_{2}=23.52$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=150$; if Δb added to b_{2}, $10^{35} \theta_{1}=12 \cdot 01,10^{35} \theta_{2}=24 \cdot 54$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=154$.

* See formulæ (IA and B) for locations of $O X, O Y$, and $O Z$.
dipole moment is taken as acting at 76° to the Aryl-O direction, i.e., as suggested for anisole by Lumbroso. ${ }^{32}$ Calculations are summarised in Table 7 for the planar forms (IA or B), and two non-planar versions of B , viz., C in which the $\mathrm{C}_{\mathrm{Ar}} \mathrm{OMe}$ triangle is in a plane at 90° to the naphthalene plane, and D in which this angle is 19° instead of 90°. The observed ${ }_{\mathrm{m}} K$ is 151×10^{-12}. A conformation such as D thus satisfactorily represents l-methoxynaphthalene as a solute; it closely resembles that previously ${ }^{10}$ given for anisole, in which a non-planarity of 18° was recognised.

The two flat extreme forms of 2-methoxynaphthalene (IIA and B) appear in scale drawings and models to be equally possible from the viewpoint of overlap between methyl and the $\mathbf{1}$ - or the 3 -hydrogen atom. The calculations reported in Table 8 refer, in addition to forms A and B , to the following: C , intermediate between A and B ; D , in which the

[^4]Table 8.
Principal polarisabilities, moment components, etc., calculated for 2-methoxynaphthalene.
Direction cosines with

Model	$O X$	$O Y$		$O Z$	
A	$b_{1}=2.389_{3}$	0.9996	0.0279	0	$\mu_{1}=0.288$
	$b_{2}=2.016_{7}$	-0.0279	0.9996	0	$\mu_{2}=-1 \cdot 124$
	$b_{3}=1.236$	0	0	1	$\mu_{3}=0$

whence $10^{35} \theta_{1}=12.35,10^{35} \theta_{2}=8.43$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=87.4$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=10 \cdot 34,10^{35} \theta_{2}=8 \cdot 82$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=80 \cdot 6$.

B (planar)	$b_{1}=2.412$	1	0	0	$\mu_{1}=-0.806$
	$b_{2}=1.994$	0	1	0	$\mu_{2}=0.834$
	$b_{3}=1.236$	0	0	1	$\mu_{3}=0$

whence $10^{35} \theta_{1}=12.67,10^{35} \theta_{2}=16.73$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=124$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=10.59,10^{35} \theta_{2}=15 \cdot 51$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=110$.

$$
\begin{array}{llrrrr}
\mathrm{C} \text { (non-planar) } & b_{1}=2.392_{4} & 0.9987 & 0.0491 & 0.0107 & \mu_{1}=-0.261 \\
& b_{2}=1.976_{8} & -0.0492 & 0.9988 & 0.0088 & \mu_{2}=-0.138 \\
& b_{3}=1.272_{8} & -0.0103 & -0.0094 & 0.9999 & \mu_{3}=-1.122
\end{array}
$$

whence $10^{35} \theta_{1}=11 \cdot 42,10^{35} \theta_{2}=-28 \cdot 70$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=-72 \cdot 7$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=9 \cdot 42,10^{35} \theta_{2}=-26 \cdot 49$, and $10^{12}{ }_{\mathrm{m}} K$ calc $=-71 \cdot 8$.

$$
\begin{array}{llrrrl}
\text { D (non-planar) } & b_{1}=2.389 & 0.9995 & 0.0313 & -0.0016 & \mu_{1}=0.274 \\
& b_{2}=2.013 & -0.0313 & 0.9994 & 0.0165 & \mu_{2}=-1.086 \\
& b_{3}=1.240 & 0.0021 & -0.0165 & 0.9999 & \mu_{3}=-0.321
\end{array}
$$

whence $10^{35} \theta_{1}=12 \cdot 24,10^{35} \theta_{2}=5 \cdot 07$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=72 \cdot 8$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=10 \cdot 23,10^{35} \theta_{2}=5 \cdot 62$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=66 \cdot 6$.

E (non-planar)	$b_{1}=2.410$	0.9991	-0.0408	0.0091	$\mu_{1}=-0.798$
	$b_{2}=1.991$	0.0409	0.9991	-0.0110	$\mu_{2}=0.763$
	$b_{3}=1.241$	-0.0086	0.0114	0.9999	$\mu_{3}=-0.362$

whence $10^{35} \theta_{1}=12 \cdot 22,10^{35} \theta_{2}=12 \cdot 51$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=104$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=10 \cdot 41,10^{35} \theta_{2}=11 \cdot 53$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=92 \cdot 3$.
$\mathrm{C}_{\mathrm{Ar}} \mathrm{OMe}$ triangle of A is rotated about $\mathrm{C}-\mathrm{O}$ by 17°; and E , in which the $\mathrm{C}_{\mathrm{Ar}} \mathrm{OMe}$ triangle of B is similarly rotated by 19°. "Division of ΔB " means distribution over b_{1} and b_{2}

(IA)

(IB)

(IIA)

(IIB)
in the ratio $\cos ^{2} 30^{\circ}: \sin ^{2} 30^{\circ}$. The measured ${ }_{m} K$ is 70.9×10^{-12}. Neither of the planar forms, A and B , nor the form C , alone corresponds with observations. If a single (or average) conformation is to be specified therefore, the high positivities of the ${ }_{m} K$'s calc. for A and B, and the negativity of that for C, point to a non-planar version of either A or B. "Trial and error" computations (illustrated by the data for D in Table 8) show one possibility starting from A; they are presented because the angle 17° is of the order of those deduced in anisole ånd l-methoxynaphthalene. With B an angle greater than 19° (cf. E in Table 8) is required to reduce the ${ }_{\mathrm{m}} K$ calc. to that observed. A unique decision cannot be made; 2-methoxynaphthalene lacks the argument from steric hindrance available for its 1 -isomer; our measurements would be equally explicable if the 2 -methoxyderivative were a mixture of non-planar forms based on A and B.

Scale drawings of the two extreme planar forms of 1-naphthaldehyde (IIIA and B) suggest that (IIIB) is sterically much less hindered than (IIIA) which involves considerable overlap between the van der Waals radii of the carbonyl oxygen and the 8 -hydrogen atom.

Table 9.
Principal polarisabilities, moment components, etc., calculated for l-naphthaldehyde.
Direction cosines with

Model	$O X$				$O Y$
A or B (planar)	$b_{1}=2.389$	0.9995	0.0314	0	$\mu_{1}=2.529$
	$b_{2}=2.017$	-0.0314	0.9995	0	$\mu_{2}=1.356$
	$b_{3}=1.104$	0	0	1	$\mu_{3}=0$

whence $10^{35} \theta_{1}=15 \cdot 59,10^{35} \theta_{2}=152 \cdot 23$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=705 \cdot 71$; with Δb added to b_{2}, $10^{35} \theta_{1}=24 \cdot 53,10^{35} \theta_{2}=129 \cdot 48$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=647 \cdot 6$.

C (non-planar)	$b_{1}=2.223$	1	0	0	$\mu_{1}=0$
	$b_{2}=2.024$	0	0.9987	0.0506	$\mu_{2}=1.559$
	$b_{3}=1.263$	0	-0.0506	0.9987	$\mu_{3}=2.410$

whence $10^{35} \theta_{1}=9 \cdot 15,10^{35} \theta_{2}=-113 \cdot 30$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=-438$; with Δb added to b_{2}, $10^{35} \theta_{1}=18 \cdot 23,10^{35} \theta_{2}=-121 \cdot 24$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=-433$.

D (non-planar)	$b_{1}=2.375$	0.9967	0.0690	0.0420	$\mu_{1}=2.519$
	$b_{2}=2.014$	-0.0702	0.9968	0.0389	$\mu_{2}=1.247$
	$b_{3}=1.130$	-0.0428	-0.0335	0.9986	$\mu_{3}=0.589$

whence $10^{35} \theta_{1}=14 \cdot 63,10^{35} \theta_{2}=134 \cdot 78$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=628$; with Δb added to b_{2}, $10^{35} \theta_{1}=23 \cdot 43,10^{35} \theta_{2}=104 \cdot 78$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=539$.

Relevant calculations are in Table 9. In conformation C the $\mathrm{C}_{\mathrm{Ar}} \cdot \mathrm{CHO}$ unit is perpendicular to the naphthalene plane; in D this unit is rotated 15° from its position in (IIIA or B).

(IIIA)

(IIIB)

As a solute, therefore, l-naphthaldehyde may exist as D ; fully planar forms appear to be excluded.

With the 2 -isomer the situation is different; steric considerations allow both (IVA) and (IVB) to be flat. Table 10 includes data for a form (IVC), in which the aldehyde and

(IVA)

(IVB)

Table 10.
Principal polarisabilities, moment components, etc., calculated for 2-naphthaldehyde.

Model		OX	$O Y$	$O Z$	
A (planar)	$b_{1}=2.374$	0.9997	0.0262	0	$\mu_{1}=0.08$
	$b_{2}=2.032$	-0.0262	0.9997	0	$\mu_{2}=3.139$
	$b_{3}=1 \cdot 104$	0	0	,	$\mu_{3}=0$

whence $10^{35} \theta_{1}=15 \cdot 40,10^{35} \theta_{2}=75 \cdot 95$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=384$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=24 \cdot 73,10^{35} \theta_{2}=59 \cdot 96$, and $10^{1{ }_{m}}{ }_{\mathrm{m}} K=356$.

B (planar)	$b_{1}=2.438_{2}$	0.9998	-0.0175	0	$\mu_{1}=2.746$
	$b_{2}=1.967_{8}$	0.0175	0.9998	0	$\mu_{2}=-1.522$
	$b_{3}=1.104$	0	0	1	$\mu_{3}=0$

whence $10^{35} \theta_{1}=16.33,10^{35} \theta_{2}=190 \cdot 63$, and $10^{12} \mathrm{~m}_{\mathrm{m}} K$ calc. $=870$; with Δb divided between b_{1} and b_{2}. $10^{35} \theta_{1}=26 \cdot 22,10^{35} \theta_{2}=248.54$, and $10^{12}{ }_{m} K$ calc. $=1155$.

$$
\begin{array}{llrrrr}
\text { C (non-planar) } & b_{1}=2.379 & 0.9863 & 0.1618 & 0.0327 & \mu_{1}=1.626 \\
& b_{2}=1.867 & -0.1626 & 0.9864 & 0.0228 & \mu_{2}=0.379 \\
& b_{3}=1.264 & -0.0286 & -0.0278 & 0.9992 & \mu_{3}=2.660
\end{array}
$$

whence $10^{35} \theta_{1}=11 \cdot 11,10^{35} \theta_{2}=-118 \cdot 11$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=-450$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=19 \cdot 19,10^{35} \theta_{2}=-121 \cdot 58$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=-431$.
the naphthyl plane are mutually perpendicular; this, however, cannot exist in appreciable amounts since the observed molar Kerr constant is positive $\left(+1235 \times 10^{-12}\right)$. The choice lies between forms A and B; the latter is obviously preferable as its ${ }_{\mathrm{m}} K$ calc. is nearer ${ }_{\mathrm{m}} K$ found, although $c a .8 \%$ too low. Perhaps the exaltation of polarisability should be preponderantly applied to b_{1} (even when it is wholly so added, ${ }_{\mathrm{m}} K$ calc. becomes only 1279×10^{-12}); at any rate there is no strong case for supposing non-planar conformations.

Leybold models suggest that either planar form (VA or B) of 1 -acetylnaphthalene will be subject to steric hindrances between the carbonyl-oxygen atom or the methyl group and the peri-hydrogen of the naphthalene nucleus, but that the hindrance in (VA) is probably

(VA)

(VB)

less than in (VB). Relevant calculations are in Table 11. Model C has the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{CO} \cdot \mathrm{Me}$ unit lying at 90° to the $\mathrm{C}_{10} \mathrm{H}_{7}$ plane; in D (derived from A) the corresponding angle is $30 \cdot 5^{\circ}$. The molar Kerr constants predicted for forms A, B, and C are either excessively positive or negative. A conformation such as D is appropriate (${ }_{\mathrm{m}} K$ calc. $=345$; obs. $=$ 341×10^{-12}).

With 2-acetylnaphthalene the flat structures (VIA and B) seem equally possible from models. Calculations (Table 12), however, strongly favour (VIB), the ${ }_{\mathrm{m}} K$ calc. for which

(VIA)

(VIB)
is 911×10^{-12} (against the measured value of 952×10^{-12}). Non-planar variants of (VIA or B) would have lower ${ }_{m} K$'s (illustrated by the highly negative ${ }_{m} K$ forecast for the orthogonal conformation C).

A point of possible relevance to 2-naphthaldehyde and 2-acetylnaphthalene is that in the parent hydrocarbon the 1,2 -carbon-carbon bond is the shortest in the molecule (M 224 of ref. $\mathbf{2 9}$ gives it as $1.35-1.36 \AA$); it therefore has the greatest double-bond character and

Table 11.
Principal polarisabilities, moment components, etc., calculated for 1-acetylnaphthalene.
Direction cosines with

Model		$O X$	$O Y$	$O Z$	
A or B (planar)	$b_{1}=2.593_{8}$	0.9998_{5}	0.0174_{5}	0	$\mu_{1}=2.52_{8}$
	$b_{2}=2 \cdot 194_{2}$	-0.0174_{5}	0.9998_{5}	0	$\mu_{2}=1.401$
	$b_{3}=1.259$	0	0	1	$\mu_{3}=0$

whence $10^{35} \theta_{1}=16.74,10^{35} \theta_{2}=159 \cdot 34$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=740$; with Δb added to b_{2}, $10^{35} \theta_{1}=19 \cdot 07,10^{35} \theta_{2}=151 \cdot 25$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=716$.

$$
\begin{array}{lllrll}
\text { C (non-planar) } & b_{1}=2.379 & 1 & 0 & 0 & \mu_{1}=0 \\
& b_{2}=2.194_{3} & 0 & 0.9999 & 0.0105 & \mu_{2}=1.467 \\
& b_{3}=1.473_{7} & 0 & -0.0105 & 0.9999 & \mu_{3}=2.490
\end{array}
$$

whence $10^{35} \theta_{1}=8 \cdot 15,10^{35} \theta_{2}=-117 \cdot 22$, and $10^{12}{ }_{\mathrm{m}} \mathrm{K}$ calc. $=-459$; with Δb added to b_{2}, $10^{35} \theta_{1}=10.48,10^{35} \theta_{2}=-128.97$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=-498$.

D (non-planar)	$b_{1}=2.553$	0.9929	0.0921	0.0742	$\mu_{1}=2.284$
	$b_{2}=2.175$	-0.0931	0.9958	0.0042	$\mu_{2}=1.255$
	$b_{3}=1.318$	-0.0732	-0.0051	0.9973	$\mu_{3}=1.249$

whence $10^{35} \theta_{1}=14 \cdot 28,10^{35} \theta_{2}=70 \cdot 82$, and $10^{12}{ }_{\mathrm{m}} K=358$; with Δb added to b_{2}, $10^{35} \theta_{1}=16 \cdot 44,10^{35} \theta_{2}=65 \cdot 65$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=345$.

Table 12.
Principal polarisabilities, moment components, etc., calculated for 2-acetylnaphthalene.
Direction cosines with

Model	$O X$				$O Y$
A (planar)	$b_{1}=2.580$	1	0	0	
	$b_{2}=2.208$	0	1	0	$\mu_{1}=0$
	$b_{3}=1.259$	0	0	1	$\mu_{2}=3.18$
			0	$\mu_{3}=0$	

whence $10^{35} \theta_{1}=16.55,10^{35} \theta_{2}=76.80$, and $10^{12}{ }_{\mathrm{m}} K=392.5$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=17 \cdot 44,10^{35} \theta_{2}=74 \cdot 87$, and $10^{12}{ }_{\mathrm{m}} K=388$.

B (planar)	$b_{1}=2.593_{7}$	0.9998_{5}	-0.0174_{5}	0	$\mu_{1}=2.781$
	$b_{2}=2.194_{3}$	0.0174_{5}	0.9998_{5}	0	$\mu_{2}=1.542$
	$b_{3}=1.259$	0	0	1	$\mu_{3}=0$

whence $10^{35} \theta_{1}=16.73,10^{35} \theta_{2}=192 \cdot 83$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=881 \cdot 2$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=17 \cdot 64,10^{35} \theta_{2}=199 \cdot 02$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=911$.

$$
\begin{array}{llcccc}
\text { C (non-planar) } & b_{1}=2.548_{7} & 0.9849_{7} & 0.1726 & 0.0069 & \mu_{1}=1.584 \\
& b_{2}=2.024_{3} & -0.1726 & 0.9849_{8} & 0.0048 & \mu_{2}=0.291 \\
& b_{3}=1.4740 & -0.0059 & -0.0059 & 0.9999_{7} & \mu_{3}=2.742
\end{array}
$$

whence $10^{35} \theta_{1}=10 \cdot 30,10^{35} \theta_{2}=-107 \cdot 72$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=-410$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=11 \cdot 06,10^{35} \theta_{2}=-110 \cdot 73$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=-419$.
will conjugate most stably with a side chain carrying a double bond when the latter is disposed trans to the 1,2 -link in the $\mathrm{C}_{\mathbf{1 0}} \mathrm{H}_{\mathbf{7}}$ group. Thus the preferred conformations just described can be understood.

When the polarisabilities recorded by Le Fèvre and Rao ${ }^{27}$ for the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{CN}$ unit in benzonitrile are used, computations for 1- and 2-naphthonitrile appear as in Table 13. The calculated molar Kerr constants for these nitriles are 4% too high and 20% too low for the 1 - and the 2 -isomer, respectively. No explanation is obvious, unless greater conjugation occurs between $\mathrm{C} \equiv \mathrm{N}$ and naphthyl than between $\mathrm{C} \equiv \mathrm{N}$ and phenyl (compare the

Table 13.
Principal polarisabilities, moment components, etc., calculated for 1 - and 2-naphthonitrile.
Direction cosines with *
Direction cosines with *
$O X \quad O Y \quad O Z$
1-C $\mathrm{C}_{10} \mathrm{H}_{7} \cdot \mathrm{CN}$ (planar)
$\begin{array}{lllll}b_{1}=2.196 & 1 & 0 & 0 & \mu_{1}=0 \\ b_{2}=2.266 & 0 & 1 & 0 & \mu_{2}=3.99 \\ b_{3}=1.111 & 0 & 0 & 1 & \mu_{3}=0\end{array}$
whence $10^{35} \theta_{1}=14.95,10^{35} \theta_{2}=256.0$, and $10^{12}{ }_{\mathrm{m}} K=1140$; with Δb added to b_{2},
$10^{35} \theta_{1}=14 \cdot 61,10^{35} \theta_{2}=246 \cdot 0$, and $10^{12}{ }_{\mathrm{m}} K=1096$.

* $O X$ and $O Y$ are in the $\mathrm{C}_{10} \mathrm{H}_{7}$ plane, with $O Y$ parallel to the central bond in the naphthyl group.
views expressed by Sauret and Lalande ${ }^{33}$ regarding the differences between the measured and the calculated magnetic susceptibilities of the naphthonitriles) in which case the appropriateness of data from benzonitrile is to be questioned. In each molecule, $\mu_{\text {resultant }}$ is taken as parallel to the $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ line; this neglects the transannular component ${ }^{34}$ which in both structures will tend to produce resultants rotated somewhat from the $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ directions towards the $O X$-axis. In such circumstances a slightly greater anisotropy (cf. remarks above, and ref. 33) for the $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ unit can be envisaged, and the prediction can be improved for 2-naphthonitrile without impairing that for 1-naphthonitrile. It is suggestive that, even with the values in the lower half of Table 13, if $\mu_{\text {resultant }}$ and b_{1} are collinear,

[^5]and Δb is applied wholly to b_{1}, the ${ }_{m} K$ calc. emerges as 2662×10^{-12}, i.e., only 10% in error.

Table 14 summarises predictions for 1- and 2-nitronaphthalene, in which the Le FèvreRao ${ }^{27}$ polarisabilities of $\mathrm{C}_{\mathrm{Ar}}-\mathrm{NO}_{2}$ (from nitrobenzene) have been incorporated. As with the nitriles, the ${ }_{\mathrm{m}} K^{\prime}$'s calculated for the 1 - and 2 -derivative are, respectively, higher and

Table 14.
Principal polarisabilities, moment components, etc., calculated for 1- and 2-nitronaphthalene.

lower than the ${ }_{m} K$'s in Table 3. Here, however, models (or scale drawings) based on van der Waals atomic radii clearly suggest that a l-nitro-group cannot be co-planar with the $\mathrm{C}_{10} \mathrm{H}_{7}$ ring although for a 2 -nitro-group this is possible. In the 1 -isomer only, therefore, "steric inhibition of resonance" is to be expected, and the anisotropy of the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{NO}_{2}$ bond should be expected to be less than in nitrobenzene (probably a little modified towards that found in nitromethane ${ }^{27}$); qualitatively both such diminished anisotropy and nonplanarity should reduce the molar Kerr constant. (A deflection of $\mathrm{C}_{\mathrm{ar}}-\mathrm{NO}_{2}$ in the XOY plane, as suggested for 1,5 -dinitronaphthalene in M 223 of ref. 29 would also tend to reduce ${ }_{\mathrm{m}} K$ calc., but energetically rotation is preferable to distortion. Moreover, the details in M 223 are annotated as subject to uncertain errors and to a planar molecule's being assumed.) A slightly greater resonance in 2-nitronaphthalene than in nitrobenzene will, of course, increase the anisotropy of $\mathrm{C}_{\mathrm{Ar}}-\mathrm{NO}_{2}$ and conduce to an elevation of ${ }_{\mathrm{m}} K$ obs., in harmony with the facts.

Finally, we consider the cases of 1- and 2-naphthylamine, the ${ }_{m} K$'s for which (like that of aniline in the unimolecular state, examined by Aroney and Le Fèvre ${ }^{9}$ in 1956) are

(VIIA)

(VIIC)

(VIIB)

μ_{r}
algebraically positive. As the amino-group can theoretically be rotated about the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{N}$ bond the naphthylamines might, a priori, assume an infinite number of conformations between three extremes indicated by (VIIA, B, and C). In the A forms the line joining the amino-hydrogen atoms is parallel to the plane of the naphthalene ring; in the B and
the C form it is perpendicular. The angles $\mathrm{C}-\mathrm{N}-\mathrm{H}$ and $\mathrm{H}-\mathrm{N}-\mathrm{H}$ are taken ${ }^{35}$ as 109°. For the calculations given in Table 15 we have used bond polarisability ellipsoids from ref. $9 b$ and followed Marsden and Sutton ${ }^{36}$ by setting $\mu_{\text {resultant }}$ as acting at 43° to the $\mathrm{C}-\mathrm{N}$ direction and in the plane defined by the $\mathrm{C}-\mathrm{N}$ longitudinal axis and the bisector of the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angle. Intermediate conformations D are defined beneath Table 15. For 1-naphthyl-

Table 15.
Principal polarisabilities, moment components, etc., calculated for 1 - and 2-naphthylamine.

Direction cosines with *
Form $O X \quad O Y \quad O Z$
1-Naphthylamine

A \quad| $b_{1}=2.277$ | 1 | 0 | 0 | $\mu_{1}=0$ |
| :--- | :--- | :--- | :--- | :--- |
| $b_{2}=1.904_{1}$ | 0 | 0.9999_{5} | -0.0104_{7} | $\mu_{2}=1.100$ |
| $b_{3}=1.193_{9}$ | 0 | 0.01047 | 0.9999_{5} | $\mu_{3}=1.005$ |

whence $10^{35} \theta_{1}=10 \cdot 79.10^{35} \theta_{2}=-18 \cdot 42$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=-32 \cdot 1 ;$ with Δb added to b_{2}, $10^{35} \theta_{1}=11 \cdot 61,10^{35} \theta_{2}=-15 \cdot 78$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=-17 \cdot 54$.

B or C	$b_{1}=2.305_{1}$	0.9999_{5}	0.01047	0	$\mu_{1}=1.028$
	$b_{2}=1.913_{9}$	-0.01047	0.9999_{5}	0	$\mu_{2}=1.079$
	$b_{3}=1.157$	0	0	1	$\mu_{3}=0$

whence $10^{35} \theta_{1}=12 \cdot 14,10^{35} \theta_{2}=26.95$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=164 \cdot 4$; with Δb added to b_{2},
$10^{35} \theta_{1}=13 \cdot 01,10^{35} \theta_{2}=27 \cdot 19$, and $10^{12}{ }_{\mathrm{ma}} K$ calc. $=169$.

$$
\begin{array}{rrrrr}
\mathrm{D} \dagger & b_{1}=2.296 & 0.9995 & 0.0300 & 0.0112 \\
& b_{2}=1.911 & -0.0291 & 0.9996 & -0.0054 \\
b_{3}=1.169 & -0.0110 & 0.0058 & 0.9999 & \mu_{1}=0.713 \\
& \mu_{3}=0.686
\end{array}
$$

whence $10^{35} \theta_{1}=11 \cdot 70,10^{35} \theta_{2}=3.25$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=62.9$; with Δb added to b_{2}, $10^{35} \theta_{1}=12 \cdot 55,10^{35} \theta_{2}=7 \cdot 13$, and $10^{12}{ }_{\mathrm{m}} K=82 \cdot 7_{6}$.

$$
\text { A } \quad \begin{array}{llrrr}
b_{1}=2.290_{2} & 0.9997_{8} & 0.0191_{8} & 0.0080_{2} & \mu_{1}=1.150 \\
& b_{2}=1.891_{9} & -0.0192_{4} & 0.9997_{9} & 0.0070_{7} \\
b_{3}=1.193_{9} & -0.0078_{9} & -0.0072_{2} & 0.9999_{4} & \mu_{3}=1.638 \\
& b_{3}=1.200
\end{array}
$$

whence ${ }^{10^{35}} \theta_{1}=10.98,10^{35} \theta_{2}=-6.37$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=19.39$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=11 \cdot 91,10^{35} \theta_{2}=-6 \cdot 28$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=23 \cdot 68$.

B	$b_{1}=2.296$	1	0	0
	$b_{2}=1.922$	0	1	$\mu_{1}=1.734$
$b_{3}=1.157$	0	0	1	$\mu_{2}=0.401$
		$\mu_{3}=0$		

whence $10^{35} \theta_{1}=12.02,10^{35} \theta_{2}=60.56$, and $10^{12}{ }_{1 \mathrm{n}} K$ calc. $=305 \cdot 2$; with Δb divided between b_{1} and b_{2},
$10^{35} \theta_{1}=13 \cdot 00,10^{35} \theta_{2}=63 \cdot 73$, and $10^{12}{ }_{\mathrm{m}} K$ calc. $=322 \cdot 7$.

C	$b_{1}=2.312$	1	0	0	$\mu_{1}=0.520$
$b_{2}=1.906$	0	1	0	$\mu_{2}=1.702$	
$b_{3}=1.157$	0	0	1	$\mu_{3}=0$	

whence $10^{35} \theta_{1}=12 \cdot 24,10^{35} \theta_{2}=18 \cdot 58$, and $10^{12}{ }_{10} K=129 \cdot 6$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=13 \cdot 2_{2}, 10^{35} \theta_{2}=18 \cdot 26$, and $10^{12}{ }_{\mathrm{m}} K=132 \cdot 4$.
whence $10^{35} \theta_{1}=11 \cdot 71,10^{35} \theta_{2}=3.83$, and $10^{12}{ }_{\mathrm{m}} K=65 \cdot 3_{5}$; with Δb divided between b_{1} and b_{2}, $10^{35} \theta_{1}=12 \cdot 66,10^{35} \theta_{2}=3 \cdot 42$, and $10^{12}{ }_{m} K=67 \cdot 6_{2}$.

[^6]amine the forms B and C cannot be distinguished by their b 's, μ 's, or ${ }_{\mathrm{m}} K^{\prime} \mathrm{s}$, but for the 2 -isomer the moment components and hence the ${ }_{\mathrm{m}} K$'s are different.
${ }^{35}$ Brockway and Jenkins, J. Amer. Chem. Soc., 1936, 58, 2036; Herzberg, " Infra-red and Raman Spectra of Polyatomic Molecules," Van Nostrand, New York, 1945.
${ }^{36}$ Marsden and Sutton, J., 1936, 599.

With 1-naphthylamine the ${ }_{\mathrm{m}} K^{\prime}$'s forecast for A or B , and for C , are negative or highly positive, respectively; the observed value lies between these limits. By trial and error the 28° twisted conformation D is found to be satisfactory. With 2-naphthylamine, of the first three extremes, C most nearly agrees with experiment, although again prediction is greatly improved by supposing a 28° twist. Leybold models reveal steric interference between the peri- and the amino-hydrogen atoms in the 1 -isomer; this could account for the rotation of the amino-group. No such hindrance, however, can be discerned in 2-naphthylamine. The D forms are, therefore, advanced as specifiable equivalent structures capable of explaining the measurements but not necessarily representing all solute molecules uniformly; obviously mixtures of A with B or C could be devised which would be just as harmonious with observations.

The award of an A. E. and F. A. Q. Stephens Research Scholarship to A. S. is gratefully acknowledged.

University of Sydney, N.S.W., Australia.

[^0]: ${ }^{2}$ Everard and Sutton, J., 1949, 2312.
 ${ }^{3}$ Batsanov and Pakhomov, Vestnik Moskov. Univ., 1956, 11, No. 2, Ser. Fiz.-Mat. i Estestven. Nauk, No. $1,65$.
 ${ }^{4}$ Merkel and Wiegand, Naturwiss., 1947, 34, 122.
 ${ }^{5}$ Mulliken, Rev. Mod. Physics, 1942, 14, 265.
 ${ }^{6}$ Le Fèvre, J. Proc. Roy. Soc. N.S.W., 1961, 95, 1.
 ${ }^{7}$ Le Fèvre and Le Fèvre, (a) Rev. Pure Appl. Chem., 1955, 5, 261; (b) J., 1953, 4041; (c) J., 1954, 1577; (d) Chap. XXXVI in " Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ. Inc., New York, London, 3rd edn., Vol. I, p. 2459.
 ${ }^{8}$ Le Fèvre and Williams, J., 1960, 1825.
 ${ }^{9}$ Aroney and Le Fèvre, J. ., (a) 1956, 2775; 1960, 2161, 3600; (b) 1958, 3002.
 ${ }^{10}$ Aroney, Le Fèvre, and Shu-Sing Chang, J., 1960, 3173.
 ${ }^{11}$ Vogel, " Practical Organic Chemistry,"'Longmans, Green and Co., London, 3rd edn., 1956.
 ${ }^{12}$ Badger, J., 1941, 535.
 ${ }^{13}$ Hodgson and Marsden, J., 1947, 127.
 14 "Physical and Thermodynamic Properties of Hydrocarbons," A.P.I. Res. Project 44, Carnegie Press, 1953.
 ${ }^{15}$ Landolt-Börnstein, " Tabellen," 1912.
 ${ }^{16}$ Beilstein's " Handbuch der Organischen Chemie."
 17 International Critical Tables, 1930.
 ${ }^{18}$ Heilbron and Bunbury, " Dictionary of Organic Compounds," Eyre and Spottiswood, London, 1953.
 ${ }^{19}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.
 ${ }^{20}$ Le Fèvre and Sundaram, J. $1962,4003$.

[^1]: ${ }^{21}$ Rampolla and Smyth, J. Amer. Chem. Soc., 1958, 80, 1057.
 ${ }^{22}$ Luther and Operskalski, Naturwiss., 1950, 37, 376.
 ${ }^{23}$ Sahney, Beri, Sarma, and Singh, J. Indian Chem. Soc., 1949, 26, 329.
 ${ }_{24}$ Chau and Le Fèvre, J., 1957, 2300.

[^2]: * Molecular and bond polarisabilities are quoted throughout in 10^{-23} c.c. units; dipole moments or moment components are in D units.
 ${ }^{25}$ Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.
 ${ }_{26}$ Vogel, Cresswell, Jeffrey, and Leicester, J., 1952, 514.
 ${ }^{27}$ Le Fèvre and Rao, $J ., 1958,1465$.
 ${ }^{28}$ Eckert and Le Fèvre, J., 1962, 1081.
 ${ }^{29}$ Sutton et al., " Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Special Publ., No. 11, 1958.

[^3]: ${ }^{90}$ Hoi and Daudel, Rec. Trav. chim., 1946, 65, 731.
 ${ }^{31}$ Le Fèvre, Le Fèvre, Rao, and Williams, J., 1960, 123.

[^4]: ${ }^{32}$ Lumbroso, Bull. Soc. chim. France, 1950, 17, 812; Lumbroso and Dumas, ibid., 1955, 655.

[^5]: ${ }^{33}$ Sauret and Lalande, Compt. rend., 1953, 236, 2066.
 ${ }^{34}$ Hampson and Weissberger, J., 1936, 393.

[^6]: * See footnote to Table 13. $\dagger \mathrm{C}-\mathrm{NH}_{2}$ unit twisted about $\mathrm{C}-\mathrm{N}$ by 28° from its position in the immediately preceding form $\mathrm{B} . \quad \ddagger \mathrm{C}-\mathrm{NH}_{2}$ unit twisted about $\mathrm{C}-\mathrm{N}$ by 28° from its position in the immediately preceding form C .

